资源类型

期刊论文 24

年份

2023 2

2022 2

2021 1

2020 2

2018 1

2016 3

2015 1

2014 1

2012 3

2011 2

2009 2

2008 2

2006 1

展开 ︾

关键词

产气速率 1

产气量 1

垃圾渗滤液 1

填埋气 1

安全系数 1

岩土工程风险 1

建筑渣土 1

模型 1

渣土场滑坡 1

甲烷 1

纳滤 1

膜生物反应器 1

展开 ︾

检索范围:

排序: 展示方式:

Treatment of landfill waste, leachate and landfill gas: A review

Hecham OMAR, Sohrab ROHANI

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 15-32 doi: 10.1007/s11705-015-1501-y

摘要: This review aims at the treatment of the entire landfill, including the waste mass and the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, anaerobic and semi-aerobic bioreactor landfills, dry-tomb landfills), leachate treatments (anaerobic and aerobic treatments, anammox, adsorption, chemical oxidation, coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, adsorption, absorption, permeation and cryogenic treatments) are reviewed. Available information and the gaps present in current knowledge is summarized. The most significant areas to expand are landfill waste treatments, which in recent years has begun to grow but there is an opportunity for much more. Another area to explore is the treatment of landfill gas, a very large field to which not much effort has been put forth. This review is to compare different treatment methods and give direction to future research.

关键词: landfill     aerobic     anaerobic     leachate     landfill gases     municipal solid waste    

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator

Rasool Bux MAHAR,Abdul Razaque SAHITO,Dongbei YUE,Kamranullah KHAN

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 159-167 doi: 10.1007/s11783-014-0685-6

摘要: The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the developed model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions of pretreated MSW.

关键词: combine growth and decay model     pretreated municipal solid waste (MSW)     multi component landfill gas (LFG) model    

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill

LOU Ziyang,CHAI Xiaoli,ZHAO Youcai,SONG Yu,ZHU Nanwen,JIA Jinping

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 405-410 doi: 10.1007/s11783-013-0565-5

摘要: Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates with different ages were collected from Laogang Refuse Landfill, and characterized with 14 key parameters. Simultaneously, principal component analysis (PCA) was applied to develop a synthetic parameter-F based on these 14 parameters, and a logarithm equation was simulated for the landfill stabilization process finally. It was predicted that leachates would meet Class I and Class II in standard for pollution control on the landfill site of municipal solid waste (GB 16889-1997) after 32 years and 22 years disposal under the natural attenuation in the humid and warm southern areas of China, respectively. The predication of landfill state would be more accurate and useful according to the synthetic parameter of leachate from a working landfill.

关键词: landfill stabilization     leachate evolution     principal component analysis    

Characterization of humic substances in bio-treated municipal solid waste landfill leachate

Guangxia QI, Dongbei YUE, Yongfeng NIE

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 711-716 doi: 10.1007/s11783-012-0421-z

摘要: Considerable organic matter remains in municipal solid waste landfill leachate after biological treatments. Humic substances (HSs) dominate the organic matter in bio-treated landfill leachate. In this study, the HSs from landfill leachate treated by membrane bioreactor (MBR-HSs) were analyzed via elemental analysis, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and charge polarized magic-angle spinning- C-nuclear magnetic resonance. The characteristic absorption in the UV wavelength range indicated the presence of high C=C and C=O double bonds within the MBR-HSs. Compared with commercial HSs, MBR-HSs had lower carbon content [48.14% for fulvic acids (FA) and 49.52% for humic acids (HA)], higher nitrogen content (4.31% for FA and 6.16% for HA), lower aromatic structure content, and higher carbohydrate and carboxylic atoms of carbon content. FA predominantly had an aliphatic structure, and HA had less condensed or substituted aromatic ring structures than natural HA. The aromatic carbon content of MBR-HSs was lower than that of humus-derived HSs but higher than that of waste-derived HSs, indicating that MBR-HSs appeared to be more similar to humus-derived HSs than waste-derived HA.

关键词: bio-treated landfill leachate     humic substances     elemental analysis     spectroscopic characteristics    

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 20-31 doi: 10.1007/s11783-009-0012-9

摘要: Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m /h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas – as alternative fuel in passenger car, truck, and bulldozer – were tested, showing the feasibility technology for LFG utilization.

关键词: landfill gas (LFG)     compressed purified landfill gas (CPLG)     pressure swing adsorption (PSA)     alternative vehicle fuel     demonstration project    

垃圾填埋场气体产生及其模型研究

黄文雄,彭绪亚,阎利

《中国工程科学》 2006年 第8卷 第9期   页码 74-79

摘要:

对填埋气的回收利用,既能减排温室气体,又能回收能源。分析了填埋气产生的原理和过程,对目前出现的填埋场产气模型进行了分类,并系统地分析了各种产气模型的计算方法、优缺点以及适用条件,为填埋气体的大规模利用提供可靠的方法。

关键词: 填埋气     模型     产气速率     产气量     甲烷    

Modified landfill gas generation rate model of first-order kinetics and two-stage reaction

Jiajun CHEN , Hao WANG , Na ZHANG ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 313-319 doi: 10.1007/s11783-009-0025-4

摘要: This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes into account the impact of leachate recirculation. The first-order kinetics and two-stage reaction (FKTSR) model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages. In this study, the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate. Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model. The model calibration was then calculated by using the experimental data. The results suggested that the new model was in line with the experimental data. The main parameters of the modified FKTSR model, including the LFG production potential (), the reaction rate constant in the first stage (), and the reaction rate constant in the second stage () of 64.746 L, 0.202 d, and 0.338 d, respectively, were comparable to the old ones of 42.069 L, 0.231 d, and 0.231 d. The new model is better able to explain the mechanisms involved in LFG generation.

关键词: landfill gas (LFG)     generation rate model     first-order kinetics     two-stage reaction     outflow function    

Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill

Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1272-7

摘要: Abstract • Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.

关键词: Landfill leachate     Process upgrade     Partial nitrification-denitrification     Bacterial community     Metagenomics    

Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering

Daoroong SUNGTHONG, Debra R. REINHART

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 149-158 doi: 10.1007/s11783-011-0324-4

摘要: Hydrogen sulfide (H S) emitted from construction and demolition waste landfills has received increasing attention. Besides its unpleasant odor, long-term exposure to a very low concentration of H S can cause a public health issue. In the case of construction and demolition (C&D) waste landfills, where gas collection systems are not normally required, the generated H S is typically not controlled and the number of treatment processes to control H S emissions in situ is limited. An attractive alternative may be to use chemically or biologically active landfill covers. A few studies using various types of cover materials to attenuate H S emissions demonstrated that H S emissions can be effectively reduced. In this study, therefore, the costs and benefits of H S-control cover systems including compost, soil amended with lime, fine concrete, and autotrophic denitrification were evaluated. Based on a case-study landfill area of 0.04 km , the estimated H S emissions of 80900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer for autotrophic denitrification cover, lime, fine concrete, and compost), ammonium nitrate fertilizer is the most cost effective, followed by hydrated lime, fine concrete, and yard waste compost. Fine concrete and yard waste compost covers are expensive measures to control H S emissions because of the large amount of materials needed to create a cover. Controlling H S emissions using fine concrete and compost is less expensive at landfills that provide on-site concrete recovery and composting facilities; however, ammonium nitrate fertilizer or hydrated lime would still be more cost effective applications.

关键词: hydrogen sulfide emissions     construction and demolition waste     autotrophic denitrification     landfill biocovers    

Bioaerosol emissions variations in large-scale landfill region and their health risk impacts

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1593-9

摘要:

● The airborne bacteria in landfills were 4–50 times higher than fungi.

关键词: Microbial aerosols     Landfill sites     Health risk assessment     CALPUFF    

Screening of indicator pharmaceuticals and personal care products in landfill leachates: a case study

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1716-y

摘要:

● A systematic framework was developed to identify i-PPCPs for landfill leachate.

关键词: Landfill leachates     PPCPs     Indicator     Screening criteria     Source-specificity    

Interaction and independence on methane oxidation of landfill cover soil among three impact factors:

Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 175-185 doi: 10.1007/s11783-011-0320-8

摘要: To understand the influence patterns and interactions of three important environmental factors, i.e. soil water content, oxygen concentration, and ammonium addition, on methane oxidation, the soils from landfill cover layers were incubated under full factorial parameter settings. In addition to the methane oxidation rate, the quantities and community structures of methanotrophs were analyzed to determine the methane oxidation capacity of the soils. Canonical correspondence analysis was utilized to distinguish the important impact factors. Water content was found to be the most important factor influencing the methane oxidation rate and Type II methanotrophs, and the optimum value was 15% (w/w), which induced methane oxidation rates 10- and 6- times greater than those observed at 5% (w/w) and 20% (w/w), respectively. Ambient oxygen conditions were more suitable for methane oxidation than 3% oxygen. The addition of of ammonium induced different effects on methane oxidation capacity when conducted at low or high water content. With regard to the methanotrophs, Type II was sensitive to the changes of water content, while Type I was influenced by oxygen content. Furthermore, the methanotrophic acidophile, , was detected in soils with a pH of 4.9, which extended their known living environments.

关键词: quantitative polymerase chain reaction (PCR)     denaturing gradient gel electrophoresis (DGGE)     principal component analysis (PCA)     canonical correspondence analysis (CCA)    

Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation

Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 892-900 doi: 10.1007/s11783-012-0440-9

摘要: Chemical precipitation is a useful technology as a pretreatment to treat mature landfill leachate with high concentrations of ammonium-nitrogen ( ) and refractory organic compounds. Orthogonal experiments and factorial experiments were carried out to determine the optimal conditions enhancing the magnesium ammonium phosphate (MAP) precipitation process, and the experimental results demonstrated that the removal rate of was more than 85% when MgO and NaH PO ·2H O were applied as external sources of magnesium and phosphorous under the optimal conditions that molar ratio n(Mg)∶n(N)∶n(P) = 1.4∶1∶0.8, reaction time 60 min, original pH of leachate and settling time 30 min. In the precipitation process, pH could be maintained at the optimal range of 8–9.5 because MgO could release hydroxide ions to consume hydrogen ions. Calcium ions and carbonate ions existed in the leachate could affect the precipitation process, which resulted in the decrease of removal efficiency. The residues of MAP sediments decomposed by heating under alkaline conditions can be reused as the sources of phosphorous and magnesium for the removal of high concentrations of , and up to 90% of ammonium could be released under molar ratio of n[OH]∶n[MAP] = 2.5∶1, heating temperature 90°C and heating time 2h.

关键词: magnesium ammonium phosphate precipitation     mature landfill leachate     optimization     ammonium-nitrogen    

Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1370-6

摘要:

Ascomycota was the predominant phylum in sanitary landfill fungal communities.

关键词: Sanitary landfill     Fungal community     Diversity     Saprotroph     Physical habitat     Environmental factor    

Performance of landfill leachate treatment system with disc-tube reverse osmosis units

WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 24-31 doi: 10.1007/s11783-008-0024-x

摘要: Reverse osmosis system with the disc-tube module (DT-RO) was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill, Chongqing City, China. In the first six-mouth operation phase, the treatment performance of DT-RO system had been excellent and stable. The removal rate of chemical oxygen demand (COD), total organic carbon (TOC), electrical conductivity (EC), and ammonia nitrogen (NH-N) reached 99.2–99.7%, 99.2%, 99.6%, and over 98%, respectively. The rejection of Ca, Ba, and Mg was over 99.9%, respectively. Suspended solid (SS) was not detected in product water. Effective methods had been adopted to control membrane fouling, of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-RO system. The DT-RO system is cleaned in turns with Cleaner A and Cleaner C. At present, the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and 500 h, respectively, depending on raw the water quality.

关键词: chemical cleaning     product     organic     nitrogen     Effective    

标题 作者 时间 类型 操作

Treatment of landfill waste, leachate and landfill gas: A review

Hecham OMAR, Sohrab ROHANI

期刊论文

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator

Rasool Bux MAHAR,Abdul Razaque SAHITO,Dongbei YUE,Kamranullah KHAN

期刊论文

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill

LOU Ziyang,CHAI Xiaoli,ZHAO Youcai,SONG Yu,ZHU Nanwen,JIA Jinping

期刊论文

Characterization of humic substances in bio-treated municipal solid waste landfill leachate

Guangxia QI, Dongbei YUE, Yongfeng NIE

期刊论文

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

期刊论文

垃圾填埋场气体产生及其模型研究

黄文雄,彭绪亚,阎利

期刊论文

Modified landfill gas generation rate model of first-order kinetics and two-stage reaction

Jiajun CHEN , Hao WANG , Na ZHANG ,

期刊论文

Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill

Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng

期刊论文

Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering

Daoroong SUNGTHONG, Debra R. REINHART

期刊论文

Bioaerosol emissions variations in large-scale landfill region and their health risk impacts

期刊论文

Screening of indicator pharmaceuticals and personal care products in landfill leachates: a case study

期刊论文

Interaction and independence on methane oxidation of landfill cover soil among three impact factors:

Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO

期刊论文

Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation

Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU

期刊论文

Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill

期刊论文

Performance of landfill leachate treatment system with disc-tube reverse osmosis units

WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin

期刊论文